1/4x^2=12

Simple and best practice solution for 1/4x^2=12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x^2=12 equation:



1/4x^2=12
We move all terms to the left:
1/4x^2-(12)=0
Domain of the equation: 4x^2!=0
x^2!=0/4
x^2!=√0
x!=0
x∈R
We multiply all the terms by the denominator
-12*4x^2+1=0
Wy multiply elements
-48x^2+1=0
a = -48; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-48)·1
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*-48}=\frac{0-8\sqrt{3}}{-96} =-\frac{8\sqrt{3}}{-96} =-\frac{\sqrt{3}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*-48}=\frac{0+8\sqrt{3}}{-96} =\frac{8\sqrt{3}}{-96} =\frac{\sqrt{3}}{-12} $

See similar equations:

| k7+9=22 | | 21=6+.3x | | Y=13x+45 | | 7x-(4x-11)=23 | | 3x2/3=+9 | | 4x-2(2x-7)=-5 | | 4x2=28 | | 2.6=3y+11 | | 5.5+x=7.8 | | 4(4-2x)+x=52 | | 3/4c= | | 24x+96=196 | | 4-0.8(x-5)10=0.6(2x-5)10 | | -y/5=-52 | | 5×+7y=4×+2y=2 | | 4(4-2x)+x=55 | | 6=3(2x-) | | 3x-x=x+6 | | 5u=12=u | | 4-0.8(x-5)=0.6(2x-5) | | 30x-5=4x-14 | | 19=u/2+8 | | 3=157+34x | | 9x-12=120 | | 24+(1-5x)-(1-x)=4x-2(x-3) | | 51x-24=9 | | 1z+4-6=15-3z | | 1/6(m-9)=2/3(m+3)-1/3m | | 4x-(6x-7)=3 | | 7(-8+2+7-)=13+3b+5b | | x(7)=(-5) | | 6z+14=5z=4 |

Equations solver categories